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Where am I coming from?
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Helmholtz.AI: a Helmholtz Network across Germany

from www.helmholtz.ai

running over 7 years
2019 - 2026
each local unit:

young investigator
group
consultant team

planned staff:
37 FTEs science
35 FTEs consulting
6 FTEs coordination,
outreach, management
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https://www.helmholtz.de/fileadmin/user_upload/01_forschung/Helmholtz_Inkubator_HAICU.pdf
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Challenges in Machine Learning
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Reproducibility, Replicability, Re ... What? [Plesser, 2018] [Barba,
2018]

Let’s use the definitions that we teach! [Community, 2021]
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Recap: Image Classification using Deep Learning

figure 4 from [Yang et al., 2020]
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Human Expectations: The Imagenet Moment 2012

Inspired by Wikipedia: ImageNet Error Rate History
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https://en.wikipedia.org/wiki/ImageNet#/media/File:ImageNet_error_rate_history_(just_systems).svg
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ML can be brittle: without human intervention [Geirhos et al., 2020]

Is this a cow? “AI” says “No! It’s a horse.” Replicability?
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ML can be brittle: with deliberate human intervention [Lu et al., 2017]

Stop sign identified as vase.
Consequences for autonomous driving?

(replicability in real-life applications)
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Quality of Evidence in the Digital Age
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Uncertainties, expectations and myths: ImageNet[Russakovsky et al., 2015] again

Quality of evidence: did we really reach super-human performance?
(reliability of scientific interpretation)
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Uncertainties = guarantees for reproducibility and replicability

Figure 2: Reproduction of figure 12a from [Park and Kim, 2022] (left). Augmentation of the same
figure with estimated accuracy calculated using eq. (1) from [Steinbach et al., 2022] using a
one-sigma 68.2% (colored) and two-sigma 95% (grey) confidence interval (right). Data to reproduce
these figures was obtained by using [Rohatgi, 2021] on the figures from the preprint PDF.

Quality of evidence: Are the interpretations replicable?
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Next steps? Connect!

Exchange, Educate, Communicate (journals, conferences), …
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Summaries
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Conclusions

if you use a computer for doing ML:
Check for reproducibility of your work!

trustworthiness[Spiegelhalter, 2020] of ML (as a product or in science):
let’s get reproducibility/replicability right from the start!
scientific integrity:
progress speed versus scientific rigor

Happy to hear your feedback, questions or comments!

@helmholtz_ai helmholtz.ai linkedin.com
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Expectations: The Imagenet Moment 2012

Inspired by Wikipedia: ImageNet Error Rate History
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Humans in the loop: the Word2Vec story

2013
Natural Language Processing
algorithm (paper: [Mikolov et al.,
2013], code)
uses a neural network model to
learn word associations from a large
corpus of text
purpose:

detect synonymous words
suggest additional words for a
partial sentence

2019
open-source code does not match
algorithmic recipe [Bhat., 2019]
community used C implementation
(unquestioned)
algorithmic understanding disparate
“Is this academic dishonesty? I
don’t know the answer, and that’s a
heavy question. But I’m frankly in-
credibly pissed, and this is probably
the last time I take a machine learn-
ing paper’s explanation of the algo-
rithm seriously again …”

2022: Do we need only open-source for reproduction?[Raff and Farris, 2022]
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A way forward?
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ML requires good (enough) software engineering [Irving et al., 2021]

Machine Learning

Coding

Data
Management

Viz +
Plotting

Stats
Analysis

Workflows
Predict

Algebra

your domain decides
what good-enough is
[Wilson et al., 2017]
code needs to be
reproducible
lack of software
engineering → more
brittleness
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ML = hardware + code + data + data + data

Hardware

Software + Code

Data
for training

today

Data
at inference

today

Data
at inference
tomorrow

constant retraining and
introspection required for
ML products
data today can be corrupted
(by human or device)
data tomorrow can be
subject to drifts
(in feature space, in concept
space)
crucial: flexible MLops and
data science monitoring
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Helmholtz-Zentrum Dresden-Rossendorf

1200 staff, infrastructure+research: life science, energy and matter

Figure: HZDR/Oliver Killig
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ML = a minefield for reproducibility?

Our ML software stack yields variance [Pham et al., 2020]:

10.8% accuracy variation across DL library stack
up to 52.4% per-class accuracy variation due to DL library stack
755/901 authors unaware/unclear about code-level variance

ML has a lot of intrinsic variance! [Bouthillier et al., 2021]:
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Our Helmholtz AI Network across Germany

by James Kahn, Helmholtz AI @ KIT

6 centers host Helmholtz AI units across
Germany
innovation: combine science teams and
consulting teams

total: 78 FTEs running
consulting client base: 28.000 scientists
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Helmholtz AI Consultant Team at HZDR

Mahnoor Tanveer Helene Hoffmann

Steve Schmerler Sebastian Starke
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